PHYSICAL / INORGANIC **CHEMISTRY**

DPP No. 22

Total Marks: 43

Max. Time: 46 min.

Topic: Ionic Equilibrium

Type of Questions		M.M., Min.
Single choice Objective ('-1' negative marking) Q.1 to Q.6	(3 marks, 3 min.)	[18, 18]
Multiple choice objective ('-1' negative marking) Q.7 to Q.8	(4 marks, 4 min.)	[8, 8]
Subjective Questions ('-1' negative marking) Q.9 to Q.11	(4 marks, 5 min.)	[12, 15]
True or False (no negative marking) Q.12	(2 marks, 2 min.)	[2, 2]
Comprehension ('-1' negative marking) Q.13	(3 marks, 3 min.)	[3, 3]

- 1. NH₄CI (aq) is:
 - (A) acidic due to NH,+

(B) acidic due to CI-

(C) basic due to NH₄+

- (D) basic due to CI-
- 2. The number of H⁺ in 1 cc of a solution of pH = 13 is
 - (A) 6.023×10^7
- (B) 1×10^{-13}
- (C) 6.023×10^{13}
- (D) 1×10^{16}
- The degree of dissociation of water in a 0.1 M aqueous solution of HCl at a certain temperature t°C 3. is 3.6×10^{-15} . The temperature t must be : [density of water at t°C = 1 gm/ml.]
 - $(A) < 25^{\circ}C$

(B) = 25° C

 $(C) > 25^{\circ}C$

- (D) insufficient data to predict
- 4. Determine pH of a 0.01 M aqueous solution of CIC₂H₄NH₃CI.

$$[K_b(CIC_6H_4NH_2) = 4 \times 10^{-13}, log 19 = 1.3, log 2 = 0.3, \sqrt{16.25} = 4.02].$$

- (A) 2.1
- (B) 2.5
- (C) 3.5
- (D) 3.1
- The indicator constant for an acidic indicator, HIn is 5×10^{-6} M. This indicator appears only in the 5.

colour of acidic form when
$$\frac{[In^-]}{[HIn]} \le \frac{1}{20}$$
 and it appears only in the colour of basic form when $\frac{[HIn]}{[In^-]}$

$$\leq \frac{1}{40}$$
. The pH range of indicator is [Given : log 5 = 0.7]

- (A) 4.3 6.3
- (B) 4.0 6.6
- (C) 4.0 6.9
- (D) 3.7 6.6

- (E) 12-14
- 6. At what minimum concentration OH⁻ will 10^{-3} mole of Zn(OH)₂ go into solution as Zn(OH)₄ in 1 L solution.

$$Zn(OH)_{2}(s) + 2OH^{-}(aq) \implies Zn(OH)_{4}^{2-}(aq) \quad (K_{c} = 10^{-2})$$

- (A) 0.1 M
- (B) 0.632 M
- (C) 0.0316 M
- (D) 0.316 M
- 7.* Which of the following statements are correct at 25°C.
 - (A) pK₂ for H_3O^+ is 15.74

- (B) pK_b for OH^- is -1.74
- (C) pK_a(CH₃COOH) + pK_b(NH₄OH) = pK_w(H₂O) (D) degree of dissociation of water is 1.8×10^{-7} %

- 8.* Choose the correct statement(s)
 - (A) pH + pOH = pk_{w} is applicable for dilute acid and dilute base aqueous solution as well as for pure water.
 - (B) In acidic/basic aqueous solution at 25°C degree of dissociation of water is less than 1.8×10^{-9} .
 - (C) No chemical reaction takes place when 0.1 mol of NaH₂PO₂ and 0.1 mol of NaOH is mixed in enough water to form 1 L solution.
 - (D) Relative acidic strength of HCI, HCIO₄, HBr and HI can not be determined in water.
- 9. At what pH 0.1M Mg^{2+} solution begins to precipitate. Given K_{SP} [Mg(OH)₂] = 10^{-11} .
- 10. K₂ for acetic acid in water is 10⁻⁵ at 25°C. The pH of a mixture of 25 ml of 0.02 N acetic acid and 2.5 ml of 0.1 N NaOH (neglecting volume change) will be:
- How many of the following solutions will turn blue litmus red? 11.
 - (i) $AI_2(SO_4)_3$
- (ii) NaCl
- (iii) KCN
- (iv) H₃BO₃

- (v) H₃PO₃
- (vi) HIO₃
- (vii) H₂PtCl₆
- (viii) NH₄HSO₄

- (ix) CH₃CH₂OH
- 12. Na, HPO, is not an acid salt.
- 13. Comprehension #

For any polyprotic acid, we always consider successive dissociation. The value of equilibrium consant of successive dissociation decreases due to common ion effect.

For example:

H₂A is a dibasic acid.

$$H_2A \Longrightarrow H^+ + HA^ K_1 = \frac{[H^+][HA^-]}{[H_2A]}$$

$$HA^{-} \rightleftharpoons H^{+} + A^{--}$$
 $K_{2} = \frac{[H^{+}][A^{--}]}{[HA^{-}]}$

K₁ is greater than K₂.

- (i) Concentration of H⁺ ions in 0.1 M H₂CO₃ is (K₁ = 4 × 10⁻⁷, K₂ = 4 × 10⁻¹¹) :
- (A) 2×10^{-4} M
- (B) $4 \times 10^{-9} \text{ M}$ (C) $2 \times 10^{-3} \text{ M}$
- (D) None of these

(ii) Find the pH of 0.1 M NaHCO₃.

Use data (
$$K_1 = 4 \times 10^{-7}$$
, $K_2 = 4 \times 10^{-11}$ for H_2CO_3 , log 4 = 0.6) :

- (A) 3.7
- (B) 8.4
- (D) None of these
- (iii) Find the concentration of H⁺ ions in an aqueous solution which is saturated with H₂S (0.1 M) as well as H₂CO₂ (0.2 M).

Use data
$$[K_1 = 10^{-7}, K_2 = 10^{-14} \text{ for H}_2\text{S}, K_1 = 4 \times 10^{-7}, K_2 = 4 \times 10^{-11} \text{ for H}_2\text{CO}_3]$$
:

- (A) 3×10^{-4} M
- (B) $3.83 \times 10^{-4} \text{ M}$ (C) $2.83 \times 10^{-4} \text{ M}$
- (D) None of these

Answer Key

DPP No. # 22

1. (A)

2.

(A)

3. 8.* (C)

. (A)

5.

6. 11. (D) 05 7.* 12. (B,D)

True

(A,B,C,D)

13. (i). (A) (ii). (B) (iii). (A)

9.

10.

. 5

(C)

Hints & Solutions

PHYSICAL / INORGANIC CHEMISTRY

DPP No. #22

2. pH = 13 means [H⁺] =
$$10^{-13}$$
 mol L⁻¹
or $10^{-13} \times 6.023 \times 10^{23}$ / 1000 H⁺ ions/c.c = 6.023×10^{7}

3.
$$K_W = 55.5 \times 3.6 \times 10^{-15} \times 0.1 = 2 \times 10^{-14}$$

Hence temperature must be $> 25^{\circ}$ C.

4.
$$K_h = \frac{10^{-14}}{4 \times 10^{-13}} = 0.025$$

$$\begin{split} \mathsf{K_h} &= \frac{\mathsf{C}\alpha^2}{(\mathsf{1} - \alpha)} \ = 0.025 \quad \Rightarrow \quad \frac{0.01\,\alpha^2}{\mathsf{1} - \alpha} \ = 0.025. \\ &\Rightarrow \alpha^2 + 2.5\alpha - 2.5 = 0 \quad \Rightarrow \quad \alpha \ = 0.76 \\ [\mathsf{H}^+] &= 7.6 \times 10^{-3} \quad \Rightarrow \quad \mathsf{pH} = -\log \left[\mathsf{H}^+\right] = 2.1. \end{split}$$

5.
$$pH = P_{Kin} + log_{10} \left[\frac{ln^-}{Hln} \right]$$

$$pH = [6 - \log_{10} 5] + \log_{10} \left[\frac{1}{20} \right] = 4$$

$$pH = P_{Kin} + log_{10} \left[\frac{ln^{-}}{Hln} \right]$$
$$= P_{Kin} + log_{10} \left[\frac{40}{1} \right]$$

$$= 6 - \log_{10} 5 + \log_{10} 40$$

$$= 6 - 0.7 + 1.6 = 6.9$$

If 10⁻³ mole Zn(OH)₂ go into Zn(OH)₄²⁻.
 Zn(OH)₂ (s) + 2OH⁻ (aq) ⇒ Zn(OH)₄²⁻ (aq)

$$10^{-2} = \frac{10^{-3}}{[OH^-]^2}$$
 \Rightarrow $[OH^-] = 0.316 M$

- 7.* $pK_a (H_3O^+) = -1.74 = pK_b \text{ of } OH^$ $pK_a + pK_b = 14 \text{ only for conjugate acid base pair.}$ $\alpha = 1.8 \times 10^{-9} \text{ or } 1.8 \times 10^{-7} \% \text{ for } H_2O.$
- 8.* (A) Correct statement
 - (B) Due to common ion effect on H₂O ⇒ H⁺ + OH⁻
 - (D) relative strength of strong acids can not be determined in water due to levelling effect.

9. I.P.
$$\geq K_{sp}$$
 [Mg²⁺] [OH⁻] $\geq 10^{-11}$ [OH⁻]² $\geq 10^{-10}$ [OH⁻] $\geq 10^{-5}$ P^{OH} ≤ 5 P^H ≥ 9

10. 25 ml of 0.02 N acetic acid = $\frac{0.02}{1000}$ × 25 = 5 × 10⁻⁴ g eq.

2.5 ml of 0.1 N NaOH =
$$\frac{0.1}{1000}$$
 × 25 = 2.5 × 10⁻⁴ g eq.

After neutralization, CH₃COOH left is
$$(5-2.5) \times 10^{-4}$$
 g eq. = 2.5×10^{-4} g eq. pH = pK₃ = $-\log (10^{-5})$; = 5

- Blue litmus turns red by acidic solution
 - (i) $Al_2(SO_4)_3$
 - (iv) H₃BO₃
 - (v) H₃PO₃
 - (vi) HIO₃
 - (vii) H₂PtCl₁₆

(All five acidic nature)

- 12. Na₂HPO₃ is the salt of H₃PO₃ which is dibasic in nature (as it contains two OH⁻ groups)
- 13. (i) $[H^*] = \sqrt{K_1 C_0} = \sqrt{4 \times 10^{-7} \times 0.1} = 2 \times 10^{-4} \text{ M}.$
 - (ii) [H*] = $\sqrt{K_1K_2}$ = $\sqrt{4 \times 10^{-7} \times 4 \times 10^{-11}}$ = 4 × 10-9 M
 - (iii) [H⁺] = $\sqrt{K_1C_1 + K_2C_2} = \sqrt{10^{-7} \times 0.1 + 4 \times 10^{-7} \times 0.2} = 3 \times 10^{-4} \text{ M}$

